Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x^2+3 x-2 k=0$ and $x^2-2 x-7 k=0$ have a non-zero common root, then the positive root of the equation $k x^2+$ $(k+2) \mathrm{x}-(\mathrm{k}+1)=0$ is
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2023 (13 May Shift 1)
Options:
  • A $2$
  • B $\frac{2}{5}$
  • C $3$
  • D $\frac{3}{5}$
Solution:
2058 Upvotes Verified Answer
The correct answer is: $\frac{3}{5}$
$x^2+3 x-2 K=0$
$\begin{aligned} & x^2-2 x-7 K=0 \\ & \Rightarrow \quad \frac{x^2}{-21 K-4 K}=\frac{x}{-2 K+7 K}=\frac{1}{-2-3} \\ & \Rightarrow \quad \frac{x^2}{-25 K}=\frac{x}{5 K}=\frac{1}{-5} \\ & \therefore \quad x^2=\frac{-25 K}{-5}=5 K \\ & \quad x=\frac{5 K}{-5}=-K \\ & \therefore \quad K^2=5 K \Rightarrow K=0,5 \\ & \therefore \quad K=5(\text { As common root is non zero }) \\ & \Rightarrow \quad K x^2+(K+2) x-(K+1)=0 \Rightarrow 5 x^2+7 x-6=0 \\ & \Rightarrow \quad(5 x-3)(x+2)=0 \Rightarrow x=\frac{3}{5},-2 \\ & \therefore \quad x=\frac{3}{5} .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.