Search any question & find its solution
Question:
Answered & Verified by Expert
If $\frac{x-4}{x^2-5 x+6}$ can be expanded in the ascending powers of $x$, then the coefficient of $x^3$ is
Options:
Solution:
2590 Upvotes
Verified Answer
The correct answer is:
$\frac{-73}{648}$
$\begin{aligned} & \frac{x-4}{x^2-5 x+6}=\frac{x-4}{(x-2)(x-3)} \\ & =\frac{2}{(x-2)}-\frac{1}{(x-3)}=2(x-2)^{-1}-(x-3)^{-1} \\ & =2(-2)^{-1}\left(1-\frac{x}{2}\right)^{-1}-(-3)^{-1}\left(1-\frac{x}{3}\right)^{-1} \\ & =-\left[1+\left(\frac{x}{2}\right)+\left(\frac{x}{2}\right)^2+\left(\frac{x}{2}\right)^3+\ldots\right] \\ & \quad+\frac{1}{3}\left[1+\left(\frac{x}{3}\right)+\left(\frac{x}{3}\right)^2+\left(\frac{x}{3}\right)^3+\ldots\right] \\ & \therefore \text { Coefficient of } x^3 \text { in } \frac{x-4}{x^2-5 x+6} .\end{aligned}$
$\begin{aligned} & =-\left(\frac{1}{2}\right)^3+\frac{1}{3}\left(\frac{1}{3}\right)^3 \\ & =-\frac{1}{8}+\frac{1}{81}=\frac{-81+8}{648} \\ & =-\frac{73}{648}\end{aligned}$
$\begin{aligned} & =-\left(\frac{1}{2}\right)^3+\frac{1}{3}\left(\frac{1}{3}\right)^3 \\ & =-\frac{1}{8}+\frac{1}{81}=\frac{-81+8}{648} \\ & =-\frac{73}{648}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.