Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x \neq(2 n+1) \frac{\pi}{2}, n \in \mathbb{Z}$ and $\cos x \neq \frac{-1}{2}$ then
$$
\int\left(\frac{\sin x+\sin 2 x}{1+\cos x+\cos 2 x}\right)^2 d x=
$$
MathematicsIndefinite IntegrationTS EAMCETTS EAMCET 2022 (20 Jul Shift 2)
Options:
  • A $\frac{\tan ^3 x}{3}-x+c$
  • B $\frac{\sec ^3 x}{3}-x+c$
  • C $\cot x-x+c$
  • D $\tan x-x+c$
Solution:
2182 Upvotes Verified Answer
The correct answer is: $\tan x-x+c$
We have $\int\left(\frac{\sin (x)+\sin (2 x)}{1+\cos (x)+\cos (2 x)}\right)^2 d x$
$$
\begin{aligned}
& \Rightarrow \int\left(\frac{\sin (x)(1+2 \cos (x)}{\cos (x)(1+2 \cos (x)}\right)^2 \\
& \Rightarrow \int\left(\sec ^2 x-1\right) d x \\
& \Rightarrow \tan (x)-x+c
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.