Search any question & find its solution
Question:
Answered & Verified by Expert
If $x, 2 x+2,3 x+3$ are the first three terms of a GP, then what is its fourth term?
Options:
Solution:
1611 Upvotes
Verified Answer
The correct answer is:
$-27 / 2$
Since, $\mathrm{x}, 2 \mathrm{x}+2,3 \mathrm{x}+3$ are the terms of G.P
therefore $\frac{2 x+2}{x}=\frac{3 x+3}{2 x+2}$
$\Rightarrow(2 x+2)^{2}=x(3 x+3) \Rightarrow 4 x^{2}+4+8 x=3 x^{2}+3 x$
$\Rightarrow x^{2}+5 x+4=0$
$\Rightarrow x^{2}+4 x+x+4=0$
$\Rightarrow x(x+4)+1(x+4)=0$
$\Rightarrow \mathrm{x}=-1,-4$
Now, first term $\mathrm{a}=\mathrm{x}$
Second term, ar $=2(\mathrm{x}+1) \Rightarrow \mathrm{r}=\frac{2(x+1)}{x}$
Fourth term $=\mathrm{ar}^{3}=\mathrm{x}\left(\frac{2(x+1)}{x}\right)^{3}$
Put $x=-4$, we get
Fourth term $=-4\left(\frac{2(-4+1)}{-4}\right)^{3}=-4 \times\left(\frac{3}{2}\right)^{3}=-\frac{27}{2}$
therefore $\frac{2 x+2}{x}=\frac{3 x+3}{2 x+2}$
$\Rightarrow(2 x+2)^{2}=x(3 x+3) \Rightarrow 4 x^{2}+4+8 x=3 x^{2}+3 x$
$\Rightarrow x^{2}+5 x+4=0$
$\Rightarrow x^{2}+4 x+x+4=0$
$\Rightarrow x(x+4)+1(x+4)=0$
$\Rightarrow \mathrm{x}=-1,-4$
Now, first term $\mathrm{a}=\mathrm{x}$
Second term, ar $=2(\mathrm{x}+1) \Rightarrow \mathrm{r}=\frac{2(x+1)}{x}$
Fourth term $=\mathrm{ar}^{3}=\mathrm{x}\left(\frac{2(x+1)}{x}\right)^{3}$
Put $x=-4$, we get
Fourth term $=-4\left(\frac{2(-4+1)}{-4}\right)^{3}=-4 \times\left(\frac{3}{2}\right)^{3}=-\frac{27}{2}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.