Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\frac{42-13 x}{x^2+x-6}=\frac{\mathrm{A}}{l x+m}+\frac{\mathrm{B}}{p x+q}$ where $l m>0$ and $p q < 0$ then $\frac{\mathrm{A} l p}{\mathrm{~B} m q}=$
MathematicsFunctionsTS EAMCETTS EAMCET 2022 (19 Jul Shift 1)
Options:
  • A $\frac{27}{32}$
  • B $\frac{27}{8}$
  • C $\frac{8}{243}$
  • D $\frac{243}{32}$
Solution:
1042 Upvotes Verified Answer
The correct answer is: $\frac{27}{32}$
(a) Given, $\frac{42-13 x}{x^2+x-6}=\frac{\mathrm{A}}{l x+m}+\frac{\mathrm{B}}{p x+q}$
Take $\frac{42-13 x}{x^2+x-6}=\frac{42-13 x}{x^2+3 x-2 x-6}=\frac{42-13 x}{(x+3)(x-2)}$
$\begin{aligned}
& \frac{42-13 x}{(x+3)(x-2)}=\frac{\mathrm{A}}{(x+3)}+\frac{\mathrm{B}}{x-2} \\
& 42-13 x=\mathrm{A}(x-2)+\mathrm{B}(x+3)
\end{aligned}$
Put $x=2$,
$\begin{aligned}
& 42-26=5 \mathrm{~B} \\
& 5 \mathrm{~B}=16 \\
& \mathrm{~B}=\frac{16}{5}
\end{aligned}$
Now, put $x=-3$
$\begin{aligned}
& 42+39=-5 \mathrm{~A} \\
& 81=-5 \mathrm{~A} \\
& \mathrm{~A}=-\frac{81}{5}
\end{aligned}$
From (i),
$\frac{42-13 x}{(x+3)(x-2)}=\frac{-81}{5}\left(\frac{1}{x+3}\right)+\frac{16}{5(x-2)}$
Here, $l=1, m=3, \mathrm{p}=1, q=-2, \mathrm{~A}=\frac{-81}{5}, \mathrm{~B}=\frac{16}{5}$.
Take, $\frac{\mathrm{A} / \mathrm{p}}{\mathrm{B} m q}=\frac{\left(\frac{-81}{5}\right) \times 1 \times 1}{\left(\frac{16}{5}\right) \times 3 \times(-2)}=\frac{81}{16 \times 3 \times 2}=\frac{27}{32}$
Therefore, option (a) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.