Search any question & find its solution
Question:
Answered & Verified by Expert
If $\left(x^2+y^2\right) \mathrm{d} y=x y \mathrm{~d} x$, with $y\left(x_0\right)=e, y(1)=1$, then $x_0$ has the value
Options:
Solution:
2895 Upvotes
Verified Answer
The correct answer is:
$\sqrt{3} e$
$\begin{aligned}
& \left.\left(x^2+y^2\right) \mathrm{d} y=x y \mathrm{~d} x \quad \text { [Let } y=v x\right] \\
& \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{x^2+y^2} \\
& \Rightarrow v+x \frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{v}{1+v} \\
& \Rightarrow-\int \frac{1+v^2}{v^3} \mathrm{~d} v=\int \frac{\mathrm{d} x}{x} \\
& \Rightarrow \frac{1}{2 v^2}-\log v=\log x+\log c \\
& \Rightarrow c y=e^{\frac{x^2}{2 y^2}}
\end{aligned}$
[Let $y=v x$ ]
Putting $x=1$ and $y=1$ we get $c=e^{-\frac{1}{2}}$
$\Rightarrow y=e^{\frac{x^2-y^2}{2 y^2}}$, now putting $x=x_0$ and $y=e$ we get $x_0=\sqrt{3} e$
& \left.\left(x^2+y^2\right) \mathrm{d} y=x y \mathrm{~d} x \quad \text { [Let } y=v x\right] \\
& \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x y}{x^2+y^2} \\
& \Rightarrow v+x \frac{\mathrm{d} v}{\mathrm{~d} x}=\frac{v}{1+v} \\
& \Rightarrow-\int \frac{1+v^2}{v^3} \mathrm{~d} v=\int \frac{\mathrm{d} x}{x} \\
& \Rightarrow \frac{1}{2 v^2}-\log v=\log x+\log c \\
& \Rightarrow c y=e^{\frac{x^2}{2 y^2}}
\end{aligned}$
[Let $y=v x$ ]
Putting $x=1$ and $y=1$ we get $c=e^{-\frac{1}{2}}$
$\Rightarrow y=e^{\frac{x^2-y^2}{2 y^2}}$, now putting $x=x_0$ and $y=e$ we get $x_0=\sqrt{3} e$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.