Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}$ and $x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to
MathematicsDifferentiationMHT CETMHT CET 2023 (09 May Shift 1)
Options:
  • A $\frac{y}{x}$
  • B $\frac{-y}{x}$
  • C $\frac{x}{y}$
  • D $\frac{-x}{y}$
Solution:
1552 Upvotes Verified Answer
The correct answer is: $\frac{-y}{x}$
$x^2+y^2=\mathrm{t}+\frac{1}{\mathrm{t}}$
Squaring on both sides, we get
$x^4+y^4+2 x^2 y^2=t^2+\frac{1}{t^2}+2$
$\begin{aligned} \therefore \quad \mathrm{t}^2+\frac{1}{\mathrm{t}^2}+2 x^2 y^2=\mathrm{t}^2 & +\frac{1}{\mathrm{t}^2}+2 \\ & \ldots\left[\because x^4+y^4=\mathrm{t}^2+\frac{1}{\mathrm{t}^2}, \text { given }\right]\end{aligned}$
$\begin{aligned}
& 2 x^2 y^2=2 \\
& x^2 y^2=1
\end{aligned}$
differentiating w.r.t. $x$, we get
$\begin{aligned}
& x^2 2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x y^2=0 \\
& x^2 2 y \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 x y^2 \\
& \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x y^2}{2 x^2 y}=\frac{-y}{x}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.