Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If x3(2x-1)(x-1)2=A+B2x-1+Cx-1+D(x-1)2, then 2A-3B+4C+5D=
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2018 (25 Apr Shift 1)
Options:
  • A 212
  • B 232
  • C 14
  • D 192
Solution:
2223 Upvotes Verified Answer
The correct answer is: 14

We have,x3(2x-1)(x-1)2=A+B2x-1+Cx-1+Dx-12

Now,

Dr=(2x-1)(x-1)2

     =(2x-1)(x2-2x+1)

       =2x3-5x2+4x-1

Now,

x3(2x-1)(x-1)2=122x3(2x-1)(x-1)2

                                =122x3-5x2+4x-1+5x2-4x+1(2x-1)(x-1)2

 =121+5x2-4x+1(2x-1)(x-1)2

=12+125x2-4x+1(2x-1)(x-1)2  ...i

Now,

5x2-4x+12x-1x-12=B2x-1+Cx-1+Dx-12

5x2-4x+1x-12=B+2x-1Cx-1+Dx-12  Putting x=12 we get B=1.

Again,

5x2-4x+12x-1x-12=B2x-1+Cx-1+Dx-12

5x2-4x+12x-1=x-12×B2x-1+x-1C+D

Putting x=1, we get D=2.

Now, considering the actual expression, we have

x3(2x-1)(x-1)2=A+B2x-1+Cx-1+Dx-12

Putting x=0, we get

A-B-C+D=0

12-1-C+2=0

C=32

Now,

2A-3B+4C+5D

212-3×1+432+5×2=14

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.