Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x^{3}-2 x^{2}-9 x+18=0$ and $A=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & x & 6 \\ 7 & 8 & 9\end{array}\right|$, then the maximum value of $A$ is
MathematicsMatricesKCETKCET 2021
Options:
  • A 96
  • B 36
  • C 24
  • D 120
Solution:
1104 Upvotes Verified Answer
The correct answer is: 96
Given, $x^{3}-2 x^{2}-9 x+18=0$
and $A=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & x & 6 \\ 7 & 8 & 9\end{array}\right|$
$x^{3}-2 x^{2}-9 x+18=0$
$\Rightarrow \quad x^{2}(x-2)-9(x-2)=0$
$\Rightarrow \quad\left(x^{2}-9\right)(x-2)=0$
$\Rightarrow \quad(x-3)(x+3)(x-2)=0$
$\therefore \quad x=2,3,-3$
$A=\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & x & 6 \\ 7 & 8 & 9\end{array}\right|$
$=1(9 x-48)-2(36-42)+3(32-7 x)$
$=9 x-48+12+96-21 x$
$=-12 x+60$
$A($ when $x=2)=-12 \times 2+60=36$
$A($ when $x=3)=-12 \times 3+60=24$
$A($ when $x=-3)=-12 \times(-3)+60=96$
More value of $A$ at $x=-3$ is $96 .$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.