Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \frac{x^2+1}{x^4+1} d x=f(x)+c$, then $f(x)$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2021 (25 Aug Shift 2)
Options:
  • A $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2+1}{\sqrt{2} x}\right)$
  • B $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2-1}{\sqrt{2} x}\right)$
  • C $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1-x^2}{\sqrt{2} x}\right)$
  • D $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1+x^4}{\sqrt{2} x}\right)$
Solution:
1219 Upvotes Verified Answer
The correct answer is: $\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2-1}{\sqrt{2} x}\right)$
$\int \frac{x^2+1}{x^4+1} d x=f(x)+c$
Let
$$
\begin{aligned}
& I=\int \frac{x^2+1}{x^4+1} d x=\int \frac{x^2\left(1+\frac{1}{x^2}\right)}{x^2\left(x^2+\frac{1}{x^2}\right)} d x \\
& I=\int \frac{\left(1+\frac{1}{x^2}\right)}{\left(x-\frac{1}{x}\right)^2+(\sqrt{2})^2} d x
\end{aligned}
$$

Let $x-\frac{1}{x}=t$
$\begin{aligned} & \Rightarrow\left(1+\frac{1}{x^2}\right) d x=d t \\ & \quad I=\int \frac{d t}{(\sqrt{2})^2+t^2}=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{t}{\sqrt{2}}\right)+c \\ & \quad I=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2-1}{\sqrt{2} x}\right)+c=f(x)+c \\ & \therefore f(x)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{x^2-1}{\sqrt{2} x}\right)\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.