Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
$\begin{aligned} & \text { If } \int x^4(\log x)^3 d x=x^5\left[A(\log x)^3+B(\log x)^2+C \log x+D\right] \\ & +k, \text { then } A+B+C+5 D=\end{aligned}$
MathematicsDefinite IntegrationTS EAMCETTS EAMCET 2023 (12 May Shift 2)
Options:
  • A $\frac{2}{25}$
  • B $\frac{8}{25}$
  • C $\frac{12}{125}$
  • D $\frac{16}{125}$
Solution:
1471 Upvotes Verified Answer
The correct answer is: $\frac{2}{25}$
$\begin{aligned} & \int x_{\text {II }}^4(\log x)^3 d x \\ = & (\log x)^3 \cdot \int x^4 d x-\int\left(3(\log x)^2 \cdot \frac{1}{x} \cdot \int x^4 d x\right) d x \\ = & \frac{x^5}{5}(\log x)^3-\frac{3}{5} \int(\log x)^2 x^4 d x \\ = & \frac{x^5}{5}(\log x)^3-\frac{3}{5}\left[(\log x)^2 \cdot \frac{x^5}{5}-\int 2(\log x) \cdot \frac{1}{x} \cdot \frac{x^5}{5} d x\right] \\ = & \frac{x^5}{5}(\log x)^3-\frac{3}{5}\left[\frac{x^5}{5}(\log x)^2-\frac{2}{5} \int(\log x) \cdot x^4 d x\right] \\ = & \frac{x^5}{5}(\log x)^3-\frac{3}{25} x^5(\log x)^2+\frac{6}{25}\left[\frac{x^5}{5} \log x-\int \frac{1}{x} \cdot \frac{x^5}{5} d x\right] \\ = & \frac{x^5}{5}(\log x)^3-\frac{3}{25} x^5(\log x)^2+\frac{6}{125} x^5 \log x-\frac{6 x^5}{625}+K \\ = & x^5\left[\frac{1}{5}(\log x)^3-\frac{3}{25}(\log x)^2+\frac{6}{125} \log x-\frac{6}{625}\right]+K \\ A & \frac{1}{5}, B=\frac{-3}{25}, C=\frac{6}{125}, D=\frac{-6}{625} \\ A+B+C+5 D=\frac{1}{5}-\frac{3}{25}+\frac{6}{125}-\frac{6}{125} & \\ = & \frac{25-15+6-6}{125}=\frac{10}{125}=\frac{2}{25} .\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.