Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x=\sqrt{\mathrm{e}^{\sin ^{-1} \mathrm{t}}}$ and $y=\sqrt{\mathrm{e}^{\cos ^{-1} \mathrm{t}}}$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$ is
MathematicsDifferentiationMHT CETMHT CET 2023 (14 May Shift 2)
Options:
  • A $\frac{-y}{x^2}$
  • B $\frac{y^2}{2 x^2}$
  • C $\frac{2y}{x^2}$
  • D $\frac{-2y}{x^2}$
Solution:
2475 Upvotes Verified Answer
The correct answer is: $\frac{2y}{x^2}$
$\begin{aligned}
x y & =\sqrt{\mathrm{e}^{\sin ^{-1} \mathrm{t}}} \cdot \sqrt{\mathrm{e}^{\cos ^{-1} \mathrm{t}}} \\
& =\sqrt{\mathrm{e}^{\sin ^{-1} \mathrm{t}+\cos ^{-1} \mathrm{t}}} \\
\therefore \quad x y & =\sqrt{\mathrm{e}^{\frac{\pi}{2}}}
\end{aligned}$
Differentiating both sides w.r.t. $x$, we get
$\begin{aligned}
& x \frac{\mathrm{d} y}{\mathrm{~d} x}+y \cdot 1=0 \\
& \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{y}{x}...(i)
\end{aligned}$
$\begin{aligned} \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{~d} x^2} & =-\left(\frac{x \frac{\mathrm{d} y}{\mathrm{~d} x}-y \cdot 1}{x^2}\right) \\ \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{~d}^2} & =-\left(\frac{x\left(-\frac{y}{x}\right)-y}{x^2}\right)... [From (i)] \\ & =\frac{2 y}{x^2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.