Search any question & find its solution
Question:
Answered & Verified by Expert
If $\mathrm{x}=\mathrm{e}^{\mathrm{t}}(\sin \mathrm{t}-\cos \mathrm{t})$ and $\mathrm{y}=\mathrm{e}^{\mathrm{t}}(\sin \mathrm{t}+\cos \mathrm{t})$, then $\frac{\mathrm{dy}}{\mathrm{dx}}$ at $\mathrm{t}=\frac{\pi}{3}$ is
Options:
Solution:
2518 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{\sqrt{3}}$
$\begin{aligned} & x=e^t(\sin t-\cos t) \text { and } y=e^t(\sin t+\cos t) \\ & \therefore \quad \frac{d x}{d t}=e^t(\sin t-\cos t)+e^t(\cos t+\sin t)=2 e^t \sin t \\ & \frac{d y}{d t}=e^t(\sin t+\cos t)+e^t(\cos t-\sin t)=2 e^t \sin t \\ & \therefore \quad \frac{d y}{d x}=\frac{2 e^t \cos t}{2 e^t \sin t} \Rightarrow\left(\frac{d y}{d x}\right)_{t=\frac{\pi}{3}}=\cot \left(\frac{\pi}{3}\right)=\frac{1}{\sqrt{3}} \\ & \end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.