Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $(x+i y)=\left(\frac{1+i}{1-i}\right)^3-\left(\frac{1-i}{1+i}\right)^3$, then the true statement among the following is
MathematicsComplex NumberAP EAMCETAP EAMCET 2022 (06 Jul Shift 1)
Options:
  • A $x < y$
  • B $x>y$
  • C $x \neq 0$
  • D $x=y$
Solution:
2732 Upvotes Verified Answer
The correct answer is: $x>y$
Given $(\mathrm{x}+\mathrm{iy})=\left(\frac{1+\mathrm{i}}{1-\mathrm{i}}\right)^3-\left(\frac{1-\mathrm{i}}{1+\mathrm{i}}\right)^3$
$$
\begin{aligned}
& \Rightarrow x-i y=\left\{\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)-\left(\frac{1-i}{1+i} \times \frac{1-i}{1+i}\right)\right\} \\
& =\frac{1}{8}[-8 i-8 i] \\
& =-2 i \\
& x+i y=0+(-2) i \\
& \Rightarrow x>y
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.