Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\phi(\mathrm{x})$ is a differential function, then the solution of the differential equation $\mathrm{dy}+\left\{\mathrm{y} \phi^{\prime}(\mathrm{x})-\phi(\mathrm{x})\right.$

$\left.\phi^{\prime}(x)\right\} d x=0,$ is
MathematicsDifferential EquationsBITSATBITSAT 2015
Options:
  • A $y=\{\phi(x)-1\}+C e^{-\phi(x)}$
  • B $y \phi(x)=\{\phi(x)\}^{2}+C$
  • C $y e^{\varphi(x)}=\phi(x) e^{\phi(x)}+C$
  • D $y-\phi(x)=\phi(x) e^{-\phi(x)}$
Solution:
1399 Upvotes Verified Answer
The correct answer is: $y=\{\phi(x)-1\}+C e^{-\phi(x)}$
Given differential equation is

$\mathrm{dy}+\left\{y \phi^{\prime}(x)-\phi(x) \phi^{\prime}(x)\right\} d x=0$

$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}+\phi^{\prime}(\mathrm{x}) \mathrm{y}=\phi(\mathrm{x}) \phi^{\prime}(\mathrm{x})$

which is a linear differential equation with $\quad P=\phi^{\prime}(x), Q=\phi(x) \cdot \phi^{\prime}(x)$ and

$I \cdot F=e^{\int \phi^{\prime}(x) d x}=e^{\phi(x)}$

$\therefore$ Solution is $y \cdot e^{\phi(x)}=\int \phi(x) \cdot \phi^{\prime}(x) e^{\phi(x)} d x+C$

$\Rightarrow y \cdot e^{\phi(x)}=\int \phi(x) \cdot e^{\phi(x)} \phi^{\prime}(x) d x+C$

$\Rightarrow y \cdot e^{\phi(x)}=\phi(x) e^{\phi(x)}-\int \phi^{\prime}(x) e^{\phi(x)} d x+C$

$\Rightarrow y \cdot e^{\phi(x)}=\phi(x) e^{\phi(x)}-e^{\phi(x)}+C$

$\Rightarrow y=\lceil\phi(x)-1]+C e^{-\phi(x)}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.