Search any question & find its solution
Question:
Answered & Verified by Expert
If $X$ is a poisson variate $P(X=1)=2 P(X=2)$, then $P(X=3)$ is equal to
Options:
Solution:
1687 Upvotes
Verified Answer
The correct answer is:
$\frac{e^{-1}}{6}$
In poission distribution
$$
\begin{gathered}
P(X=x)=\frac{\lambda^x e^{-\lambda}}{x !} \\
P(X=1)=\frac{\lambda e^{-\lambda}}{1 !}=\lambda e^{-\lambda} \\
P(X=2)=\frac{\lambda^2 e^{-\lambda}}{2 !}=\frac{\lambda^2 e^{-\lambda}}{2} \\
P(X=1)=2 P(x=2) \\
\Rightarrow \quad \lambda e^{-\lambda}=2 \times \frac{\lambda^2 e^{-\lambda}}{2} \\
\Rightarrow \quad \lambda(\lambda-1)=0
\end{gathered}
$$
$$
\begin{aligned}
& \lambda \neq 0 \\
\therefore & \lambda=1
\end{aligned}
$$
Hence, $P(X=3)=\frac{(1)^3 e^{-1}}{3 !}=\frac{e^{-1}}{6} \quad(\because \lambda=1)$
$$
\begin{gathered}
P(X=x)=\frac{\lambda^x e^{-\lambda}}{x !} \\
P(X=1)=\frac{\lambda e^{-\lambda}}{1 !}=\lambda e^{-\lambda} \\
P(X=2)=\frac{\lambda^2 e^{-\lambda}}{2 !}=\frac{\lambda^2 e^{-\lambda}}{2} \\
P(X=1)=2 P(x=2) \\
\Rightarrow \quad \lambda e^{-\lambda}=2 \times \frac{\lambda^2 e^{-\lambda}}{2} \\
\Rightarrow \quad \lambda(\lambda-1)=0
\end{gathered}
$$
$$
\begin{aligned}
& \lambda \neq 0 \\
\therefore & \lambda=1
\end{aligned}
$$
Hence, $P(X=3)=\frac{(1)^3 e^{-1}}{3 !}=\frac{e^{-1}}{6} \quad(\because \lambda=1)$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.