Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x$ is numerically so small so that $x^2$ and higher powers of $x$ can be neglected, then $\left(1+\frac{2 x}{3}\right)^{3 / 2} \cdot(32+5 x)^{-1 / 5}$ is approximately equal to
MathematicsBinomial TheoremAP EAMCETAP EAMCET 2009
Options:
  • A $\frac{32+31 x}{64}$
  • B $\frac{31+32 x}{64}$
  • C $\frac{31-32 x}{64}$
  • D $\frac{1-2 x}{64}$
Solution:
1867 Upvotes Verified Answer
The correct answer is: $\frac{32+31 x}{64}$
$\begin{aligned}
(1+ & \left.\frac{2 x}{3}\right)^{3 / 2}(32+5 x)^{-1 / 5} \\
& =\left[1+\frac{3}{2}\left(\frac{2 x}{3}\right)\right](32)^{-1 / 5}\left(1+\frac{5}{32} x\right)^{-1 / 5}
\end{aligned}$
(Neglect higher powers of $x$ )
$=[1+x] 2^{-1}\left[1-\frac{1}{5}\left(\frac{5}{32}\right) x\right]$
(Neglect higher powers of $x$ )
$\begin{aligned}
& =\frac{1}{2}(1+x)\left(1-\frac{x}{32}\right) \\
& =\frac{(1+x)(32-x)}{64}=\frac{32+31 x}{64}
\end{aligned}$
(Neglect $x^2$ term)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.