Search any question & find its solution
Question:
Answered & Verified by Expert
If $x$ is so small that all terms containing $x^2$ and higher powers of $x$ can be neglected, then the approximate value of $\frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}}$ when $x=\frac{6}{371}$, is
Options:
Solution:
1442 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{14}$
We have,
$\begin{aligned}
& \frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}} \\
& =\left(1+\frac{2 x}{3}\right)^{-4} \times 2\left(1+\frac{5}{4} x\right)^{1 / 2} \times(9+x)^{-3 / 2} \\
& =\left(1+\frac{2 x}{3}\right)^{-4} \times 2 \times\left(1+\frac{5}{4} x\right)^{1 / 2} \times \frac{1}{27}\left(1+\frac{x}{9}\right)^{-3 / 2} \\
& =\frac{2}{27}\left(1-\frac{8 x}{3}\right)\left(1+\frac{5}{8} x\right)\left(1-\frac{1}{6} x\right) \\
& =\frac{2}{27}\left(1-\frac{8}{3} x+\frac{5}{8} x-\frac{1}{6} x\right)=\frac{2}{27}\left(1-\frac{53}{24} x\right)
\end{aligned}$
$\begin{aligned}
\text { Put, } x=\frac{6}{371} & =\frac{2}{27}\left(1-\frac{53 \times 6}{24 \times 371}\right) \\
& =\frac{2}{27}\left(1-\frac{53}{1484}\right)=\frac{2}{27} \times \frac{1431}{1484}=\frac{1}{14}
\end{aligned}$
$\begin{aligned}
& \frac{\left(1+\frac{2 x}{3}\right)^{-4}(4+5 x)^{1 / 2}}{(9+x)^{3 / 2}} \\
& =\left(1+\frac{2 x}{3}\right)^{-4} \times 2\left(1+\frac{5}{4} x\right)^{1 / 2} \times(9+x)^{-3 / 2} \\
& =\left(1+\frac{2 x}{3}\right)^{-4} \times 2 \times\left(1+\frac{5}{4} x\right)^{1 / 2} \times \frac{1}{27}\left(1+\frac{x}{9}\right)^{-3 / 2} \\
& =\frac{2}{27}\left(1-\frac{8 x}{3}\right)\left(1+\frac{5}{8} x\right)\left(1-\frac{1}{6} x\right) \\
& =\frac{2}{27}\left(1-\frac{8}{3} x+\frac{5}{8} x-\frac{1}{6} x\right)=\frac{2}{27}\left(1-\frac{53}{24} x\right)
\end{aligned}$
$\begin{aligned}
\text { Put, } x=\frac{6}{371} & =\frac{2}{27}\left(1-\frac{53 \times 6}{24 \times 371}\right) \\
& =\frac{2}{27}\left(1-\frac{53}{1484}\right)=\frac{2}{27} \times \frac{1431}{1484}=\frac{1}{14}
\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.