Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{x}$ is so small that $\mathrm{x}^3$ and higher powers of $\mathrm{x}$ may be neglected, then $\frac{(1+x)^{3 / 2}-\left(1+\frac{1}{2} x\right)^3}{(1-x)^{1 / 2}}$
MathematicsApplication of DerivativesJEE MainJEE Main 2005
Options:
  • A
    $1-\frac{3}{8} x^2$
  • B
    $3 x+\frac{3}{8} x^2$
  • C
    $-\frac{3}{8} x^2$
  • D
    $\frac{x}{2}-\frac{3}{8} x^2$
Solution:
2194 Upvotes Verified Answer
The correct answer is:
$-\frac{3}{8} x^2$
$$
\begin{aligned}
& (1-x)^{1 / 2}\left[1+\frac{3}{2} x+\frac{3}{2}\left(\frac{3}{2}-1\right) x^2-1-3\left(\frac{1}{2} x\right)-3(2)\left(\frac{1}{2} x\right)^2\right] \\
& =(1-x)^{1 / 2}\left[-\frac{3}{8} x^2\right]=-\frac{3}{8} x^2
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.