Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $[x]$ is the greatest integer not exceeding $x$, then
$$
\int_{-0.5}^{1.5} x^2[x] d x=
$$
MathematicsDefinite IntegrationAP EAMCETAP EAMCET 2023 (15 May Shift 1)
Options:
  • A $\frac{4.5}{4}$
  • B $\frac{3}{4}$
  • C $\frac{3.5}{4}$
  • D $\frac{2.375}{2}$
Solution:
1015 Upvotes Verified Answer
The correct answer is: $\frac{3}{4}$
$\begin{aligned} & \text { } \int_{-0.5}^{1.5} x^2[x] d x=\int_{-0.5}^0 x^2(-1) d x+\int_0^1 x^2(0) d x+\int_1^{1.5} x^2(1) d x \\ & =-\frac{1}{3}\left[x^3\right]_{-\frac{1}{2}}^0+\frac{1}{3}\left[x^3\right]_1^{3 / 2}=\frac{3}{4}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.