Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x=\log _e\left(\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}}\right), \tan \frac{y}{2}=\sqrt{\frac{1-t}{1+t}}$. Then $\left(y_1\right)_{t=\frac{1}{2}}$ has the value
MathematicsDifferentiationMHT CETMHT CET 2023 (13 May Shift 2)
Options:
  • A $\frac{1}{2}$
  • B $-\frac{1}{2}$
  • C $\frac{1}{4}$
  • D $-\frac{1}{4}$
Solution:
1688 Upvotes Verified Answer
The correct answer is: $-\frac{1}{2}$
$\begin{aligned} & x=\log _{\mathrm{e}}\left(\frac{\cos \frac{y}{2}-\sin \frac{y}{2}}{\cos \frac{y}{2}+\sin \frac{y}{2}}\right) \\ & \Rightarrow \mathrm{e}^x=\frac{1-\tan \frac{y}{2}}{1+\tan \frac{y}{2}}\end{aligned}$
$\Rightarrow \mathrm{e}^x=\tan \left(\frac{\pi}{4}-\frac{y}{2}\right) \quad$....(i) $\left[\because \tan \frac{\pi}{4}=1\right]$
Differentiating w.r.t. $x$, we get
$\mathrm{e}^x=\sec ^2\left(\frac{\pi}{4}-\frac{y}{2}\right) \cdot\left(\frac{-1}{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}$
$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=-2 \mathrm{e}^x \cos ^2\left(\frac{\pi}{4}-\frac{y}{2}\right)$
$\begin{aligned} & \text { When } \mathrm{t}=\frac{1}{2}, \\ & \tan \frac{y}{2}=\sqrt{\frac{1-\frac{1}{2}}{1+\frac{1}{2}}} \\ & \Rightarrow \tan \frac{y}{2}=\frac{1}{\sqrt{3}} \\ & \Rightarrow \frac{y}{2}=\frac{\pi}{6}\end{aligned}$
Substituting $\frac{y}{2}=\frac{\pi}{6}$ in (i), we get
$\mathrm{e}^x=\tan \frac{\pi}{12}=2-\sqrt{3}$
$\therefore \quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)_{\mathrm{t}=\frac{1}{2}}=-2(2-\sqrt{3}) \cos ^2 \frac{\pi}{12}$
$\begin{aligned} & =-2(2-\sqrt{3})\left(\frac{\sqrt{3}+1}{2 \sqrt{2}}\right)^2 \\ & =\frac{-1}{2}(2-\sqrt{3})(2+\sqrt{3}) \\ & =-\frac{1}{2}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.