Search any question & find its solution
Question:
Answered & Verified by Expert
If $x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4(y>0),$ then $\frac{d y}{d x}$ at $x=e$ is
equal to :
Options:
equal to :
Solution:
2716 Upvotes
Verified Answer
The correct answer is:
$\frac{(2 e-1)}{2 \sqrt{4+e^{2}}}$
Consider the equation,
$x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4$
Differentiate both sides w.r.t. $x$
$\log _{e}\left(\log _{e} x\right)+x \cdot \frac{1}{x \cdot \log _{e} x}-2 x+2 y \frac{d y}{d x}=0$
$\log _{e}\left(\log _{e} x\right)+\frac{1}{\log _{e} x}-2 x+2 y \frac{d y}{d x}=0$
When $x=e, y=\sqrt{4+e^{2}}$. Put these values in (1),
$0+1-2 e+2 \sqrt{4+e^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{2 e-1}{2 \sqrt{4+e^{2}}}$
$x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4$
Differentiate both sides w.r.t. $x$
$\log _{e}\left(\log _{e} x\right)+x \cdot \frac{1}{x \cdot \log _{e} x}-2 x+2 y \frac{d y}{d x}=0$
$\log _{e}\left(\log _{e} x\right)+\frac{1}{\log _{e} x}-2 x+2 y \frac{d y}{d x}=0$
When $x=e, y=\sqrt{4+e^{2}}$. Put these values in (1),
$0+1-2 e+2 \sqrt{4+e^{2}} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{2 e-1}{2 \sqrt{4+e^{2}}}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.