Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4(y>0),$ then $\frac{d y}{d x}$ at $x=e$ is

equal to :
MathematicsDifferentiationJEE MainJEE Main 2019 (11 Jan Shift 1)
Options:
  • A $\frac{(1+2 e)}{2 \sqrt{4+e^{2}}}$
  • B $\frac{(2 e-1)}{2 \sqrt{4+e^{2}}}$
  • C $\frac{(1+2 e)}{\sqrt{4+e^{2}}}$
  • D $\frac{e}{\sqrt{4+e^{2}}}$
Solution:
2716 Upvotes Verified Answer
The correct answer is: $\frac{(2 e-1)}{2 \sqrt{4+e^{2}}}$
Consider the equation,

$x \log _{e}\left(\log _{e} x\right)-x^{2}+y^{2}=4$

Differentiate both sides w.r.t. $x$

$\log _{e}\left(\log _{e} x\right)+x \cdot \frac{1}{x \cdot \log _{e} x}-2 x+2 y \frac{d y}{d x}=0$

$\log _{e}\left(\log _{e} x\right)+\frac{1}{\log _{e} x}-2 x+2 y \frac{d y}{d x}=0$

When $x=e, y=\sqrt{4+e^{2}}$. Put these values in (1),

$0+1-2 e+2 \sqrt{4+e^{2}} \frac{d y}{d x}=0$

$\frac{d y}{d x}=\frac{2 e-1}{2 \sqrt{4+e^{2}}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.