Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x=\log t, y+1=\frac{1}{t}, \quad$ then $e^{-x} \frac{d^{2} x}{d y^{2}}+\frac{d x}{d y}=$
MathematicsDifferentiationMHT CETMHT CET 2020 (12 Oct Shift 1)
Options:
  • A 0
  • B 2
  • C $-1$
  • D 1
Solution:
1088 Upvotes Verified Answer
The correct answer is: 0
Given $x=\log t$ and $y+1=\frac{1}{t}$
$\therefore \frac{d x}{d t}=\frac{1}{t}$ and $\frac{d y}{d t}=\frac{-1}{t^{2}}$
$\therefore \frac{d x}{d y}=\frac{1}{t} \times\left(-t^{2}\right)=-t$
$\therefore \frac{d^{2} x}{d y^{2}}=\frac{d}{d t}\left(\frac{d x}{d y}\right) \times \frac{d t}{d y}=\frac{d}{d t}(-t) \times \frac{1}{\left(\frac{d y}{d t}\right)}=\frac{(-1)}{\left(\frac{-1}{t^{2}}\right)}=t^{2}$
$e^{-x}=e^{-\log t}=e^{\log (t)^{-1}}=\frac{1}{t}$
Thus $e^{-x} \frac{d^{2} y}{d x^{2}}+\frac{d x}{d y}$
$=\left(\frac{1}{t}\right)\left(t^{2}\right)+(-t)=t-t=0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.