Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x_n=\cos \frac{\pi}{2^n}+i \sin \frac{\pi}{2^n}$, then $\prod_{n=1}^{\infty} x_n$ is equal to
MathematicsComplex NumberJEE Main
Options:
  • A $-1$
  • B $1$
  • C $\frac{1}{\sqrt{2}}$
  • D $\frac{i}{\sqrt{2}}$
Solution:
1851 Upvotes Verified Answer
The correct answer is: $-1$
$\begin{aligned} & \text { Given that, }=\frac{9+6 i}{13} \\ & \qquad \begin{aligned} X_n & =\cos \frac{\pi}{2^n}+i \sin \frac{\pi}{2^n}=\operatorname{cis} \frac{\pi}{2^n} \\ \therefore \quad \prod_{n=1}^{\infty} X_n & =\prod_{n=1}^{\infty} \operatorname{cis} \frac{\pi}{2^n} \\ & =\operatorname{cis} \frac{\pi}{2} \cdot \operatorname{cis} \frac{\pi}{2^2} \cdot \operatorname{cis} \frac{\pi}{2^3} \ldots . \\ & =\operatorname{cis}\left(\frac{\pi}{2}+\frac{\pi}{2^2}+\frac{\pi}{2^3}+\ldots . .\right) \\ & =\operatorname{cis}\left(\frac{\frac{\pi}{2}}{1-\frac{1}{2}}\right)=\operatorname{cis} \pi \\ & =-1\end{aligned}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.