Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and

$x \sin \theta=y \cos \theta,$ then $x^{2}+y^{2}=$
MathematicsTrigonometric Ratios & IdentitiesBITSATBITSAT 2013
Options:
  • A 1
  • B 2
  • C 0
  • D None of these
Solution:
1970 Upvotes Verified Answer
The correct answer is: 1
$x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$

and $x \sin \theta=y \cos \theta$

Equation (i) may be written as $x \sin \theta \cdot \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$

$\Rightarrow y \cos \theta \sin ^{2} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$

$\Rightarrow y \cos \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\sin \theta \cos \theta$

$\Rightarrow y \cos \theta=\sin \theta \cos \theta \therefore y=\sin \theta \quad \ldots$

Putting the value of y from

(iii) in (ii), we get $\mathrm{x} \sin \theta=\sin \theta \cdot \cos \theta \Rightarrow \mathrm{x}=\cos \theta \quad \ldots$ (iv)

Squaring (iii) and (iv) and adding, we get $\mathrm{x}^{2}+\mathrm{y}^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.