Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If ' $x$ ' takes negative permissible value, then $\sin ^{-1} \mathrm{x}$ is equal to
MathematicsInverse Trigonometric FunctionsKCETKCET 2009
Options:
  • A $-\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}$
  • B $\cos ^{-1} \sqrt{\mathrm{x}^{2}-1}$
  • C $\pi-\cos ^{-1} \sqrt{1-x^{2}}$
  • D $\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}$
Solution:
2032 Upvotes Verified Answer
The correct answer is: $-\cos ^{-1} \sqrt{1-\mathrm{x}^{2}}$
Let $\sin ^{-1} x=y$. Then, $x=\sin y$
Since, $-1 \leq x < 0$, therefore $-\frac{\pi}{2} \leq \sin ^{-1} x < 0$
$\Rightarrow \quad-\frac{\pi}{2} \leq \mathrm{y} < 0$
Now, $\cos y=\sqrt{1-\sin ^{2} y}$
$\Rightarrow \quad \cos y=\sqrt{1-x^{2}}$ for $0 \leq y \leq \pi$
But $\quad-\frac{\pi}{2} \leq \mathrm{y} < 0$
$\Rightarrow \quad \frac{\pi}{2} \geq-y>0$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.