Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\int \frac{2 x+3}{x(x+1)(x+2)(x+3)+1} d x$ $=\frac{-1}{a x^2+b x+c}+\alpha$, then value of $a+b+c$ is equal to
MathematicsIndefinite IntegrationAP EAMCETAP EAMCET 2021 (25 Aug Shift 1)
Options:
  • A 3
  • B 4
  • C 5
  • D 6
Solution:
2005 Upvotes Verified Answer
The correct answer is: 5
We have,
$$
\begin{aligned}
& \int \frac{2 x+3}{x(x+1)(x+2)(x+3)+1} d x=\frac{-1}{a x^2+b x+c}+\alpha \\
& \text { LHS }=\int \frac{2 x+3}{x(x+3)(x+1)(x+2)+1} d x \\
& \quad=\int \frac{(2 x+3) d x}{\left(x^2+3 x\right)\left(x^2+3 x+2\right)+1}
\end{aligned}
$$
Put $x^2+3 x=t \Rightarrow(2 x+3) d x=d t$
$$
\begin{aligned}
& \therefore \text { LHS }=\int \frac{d t}{t^2+2 t+1} \\
&=\int \frac{d t}{(t+1)^2}=-\frac{1}{t+1}+\alpha \\
&=\frac{-1}{x^2+3 x+1}+\alpha \\
& a=1, b=3, c=1 \\
& \therefore \quad a+b+c=1+3+1=5
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.