Search any question & find its solution
Question:
Answered & Verified by Expert
If $X=x+h, Y=y+k$ transforms $\frac{d y}{d x}=\frac{2 x+3 y-7}{3 x+2 y-8}$ to a homogeneous differential equation, then $(\mathrm{h}, \mathrm{k})=$
Options:
Solution:
1652 Upvotes
Verified Answer
The correct answer is:
$(2,1)$
$\because \frac{d y}{d x}=\frac{2 x+3 y-7}{3 x+2 y-8}$ ...(i)
Let us use the transformation :
$\begin{aligned} & X=x+h \Rightarrow x=X-h \\ & Y=y+k \Rightarrow y=Y-k \\ & \text { And } \frac{d X}{d Y}=\frac{d x}{d y}\end{aligned}$
Using above transformation in eq (i), we get
$\begin{aligned} & \frac{d Y}{d X}=\frac{2(X-h)+3(Y-k)-7}{3(X-h)+2(Y-k)-8} \\ & \Rightarrow \frac{d Y}{d X}=\frac{2 X+3 Y+(-2 h-3 k-7)}{3 X+2 Y+(-3 h-2 k-8)}\end{aligned}$
To make above differential equation homogeneous:
$-2 h-3 k-7=0$ ...(ii)
$\&-3 h-2 k-8=0$ ...(iii)
Solving equations (ii) \& (iii), we gt
$\begin{aligned} & \mathrm{h}=2 \& \mathrm{k}=1 \\ & (\mathrm{~h}, \mathrm{k})=(2,1)\end{aligned}$
Let us use the transformation :
$\begin{aligned} & X=x+h \Rightarrow x=X-h \\ & Y=y+k \Rightarrow y=Y-k \\ & \text { And } \frac{d X}{d Y}=\frac{d x}{d y}\end{aligned}$
Using above transformation in eq (i), we get
$\begin{aligned} & \frac{d Y}{d X}=\frac{2(X-h)+3(Y-k)-7}{3(X-h)+2(Y-k)-8} \\ & \Rightarrow \frac{d Y}{d X}=\frac{2 X+3 Y+(-2 h-3 k-7)}{3 X+2 Y+(-3 h-2 k-8)}\end{aligned}$
To make above differential equation homogeneous:
$-2 h-3 k-7=0$ ...(ii)
$\&-3 h-2 k-8=0$ ...(iii)
Solving equations (ii) \& (iii), we gt
$\begin{aligned} & \mathrm{h}=2 \& \mathrm{k}=1 \\ & (\mathrm{~h}, \mathrm{k})=(2,1)\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.