Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{x}+\mathrm{y}=12$, what is the maximum value of $\mathrm{xy}$ ?
MathematicsApplication of DerivativesNDANDA 2007 (Phase 1)
Options:
  • A 25
  • B 36
  • C 49
  • D 64
Solution:
1573 Upvotes Verified Answer
The correct answer is: 36
Given $x+y=12$ $\mathrm{y}=12-\mathrm{x}$
so, $x y=x(12-x)=12 x-x^{2}$
Let $f(x)=12 x-x^{2}$
$\mathrm{f}^{\prime}(\mathrm{x})=12-2 \mathrm{x}$
To get maximum or minimum value $\mathrm{f}^{\prime}(\mathrm{x})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{x}) < 0$ it is maximum
$\mathrm{f}^{\prime \prime}(\mathrm{x})=-2 < 0$
so, $\mathrm{f}^{\prime}(\mathrm{x})=0$ will give maximum value. so, $12-2 x=0 \Rightarrow x=6$ and $x+y=12 \Rightarrow y=6$
Hence, $\mathrm{y}=6$ and $\mathrm{f}(\mathrm{x})=12 \mathrm{x}-\mathrm{x}^{2}=12 \times 6-36=36$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.