Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x+y=\frac{\pi}{2}$, then the maximum value of $\sin x$.siny is
MathematicsApplication of DerivativesMHT CETMHT CET 2020 (16 Oct Shift 2)
Options:
  • A $\frac{1}{2}$
  • B $\frac{-1}{2}$
  • C $\frac{-1}{\sqrt{2}}$
  • D $\frac{1}{\sqrt{2}}$
Solution:
1415 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}$
(C)
$x+y=\frac{\pi}{2} \quad \Rightarrow \quad y=\frac{\pi}{2}-x$
$\begin{array}{l}
\sin x \cdot \sin y=\sin x \cdot \sin \left(\frac{\pi}{2}-x\right)=\sin x \cos x=\frac{2 \sin x \cdot \cos x}{2}=\frac{\sin 2 x}{2} \\
\text { We know, }-1 \leq \sin 2 x \leq 1 \Rightarrow \frac{-1}{2} \leq \frac{\sin 2 x}{2} \leq \frac{1}{2}
\end{array}$
So maximum value is $\frac{1}{2}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.