Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $x+y=60, x>0, y>0$, then the maximum value of $x y^3$ is
MathematicsSequences and SeriesTS EAMCETTS EAMCET 2019 (04 May Shift 2)
Options:
  • A $(15)^4 \frac{25}{3}$
  • B $45(15)^3$
  • C $\frac{(45)^3 9}{5}$
  • D $\frac{(45)^4}{3}$
Solution:
1380 Upvotes Verified Answer
The correct answer is: $\frac{(45)^4}{3}$
Given, $x+y=60$
By $\mathrm{AM} \geq \mathrm{GM}$
$$
\begin{array}{ll}
& \frac{x+\frac{y}{3}+\frac{y}{3}+\frac{y}{3}}{4} \geq\left(\frac{x y^3}{27}\right)^{1 / 4} \\
\Rightarrow \quad & \frac{x+y}{4} \geq\left(\frac{x y^3}{27}\right)^{\frac{1}{4}} \\
\Rightarrow \quad & \frac{60}{4} \geq\left(\frac{x y^3}{27}\right)^{\frac{1}{4}} \\
\Rightarrow \quad & \frac{x y^3}{27} \leq(15)^4 \\
\Rightarrow \quad & x y^3 \leq 3^3 \times 3^4 \times 5^4 \Rightarrow x y^3 \leq \frac{(45)^4}{3}
\end{array}
$$
$\therefore$ Maximum value of $x y^3$ is $\frac{(45)^4}{3}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.