Search any question & find its solution
Question:
Answered & Verified by Expert
If $\frac{y}{x} \cos ^4 \alpha+\frac{x}{y} \sin ^4 \alpha=2 \sin ^2 \alpha \cdot \cos ^2 \alpha$, then $\frac{d y}{d x}=$
Options:
Solution:
2158 Upvotes
Verified Answer
The correct answer is:
$\frac{\sin ^2 \alpha}{\cos ^2 \alpha}$
$\begin{aligned} & \text { we have } \frac{\mathrm{y}}{\mathrm{x}} \cos ^4 \alpha+\frac{\mathrm{x}}{\mathrm{y}} \sin ^4 \alpha=2 \sin ^2 \alpha \cdot \cos ^2 \alpha \\ & \Rightarrow \mathrm{x}^2 \sin ^4 \alpha+\mathrm{y}^2 \cos ^4 \alpha-2 \mathrm{xy} \sin ^2 \alpha \cos ^2 \alpha=0 \\ & \Rightarrow\left(\mathrm{x} \sin ^2 \alpha-\mathrm{y} \cos ^2 \alpha\right)=0 \\ & \Rightarrow \sin ^2 \alpha-\frac{\mathrm{dy}}{\mathrm{dx}} \cos ^2 \alpha=0 \\ & \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\sin ^2 \alpha}{\cos ^2 \alpha}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.