Search any question & find its solution
Question:
Answered & Verified by Expert
If $x^y=e^{x-y}$, then $\frac{d y}{d x}=$
Options:
Solution:
1595 Upvotes
Verified Answer
The correct answer is:
$\frac{\log x}{(1+\log x)^2}$
$x^y=e^{x-y}$

$\begin{aligned} & \Rightarrow \frac{d y}{d x} \log x+y \cdot \frac{1}{x}=1-\frac{d y}{d x} \\ & \Rightarrow \frac{d y}{d x}=\frac{x-y}{x(1+\log x)} \\ & \Rightarrow \frac{d y}{d x}=\frac{\log x}{(1+\log x)^2} \quad\left[\text { Putting } y=\frac{x}{1+\log x} \text { from (i)] }\right.\end{aligned}$

$\begin{aligned} & \Rightarrow \frac{d y}{d x} \log x+y \cdot \frac{1}{x}=1-\frac{d y}{d x} \\ & \Rightarrow \frac{d y}{d x}=\frac{x-y}{x(1+\log x)} \\ & \Rightarrow \frac{d y}{d x}=\frac{\log x}{(1+\log x)^2} \quad\left[\text { Putting } y=\frac{x}{1+\log x} \text { from (i)] }\right.\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.