Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(x^{2019} \cdot y^{2020}=(x+y)^{4039}\), then \(\frac{d y}{d x}=\)
MathematicsDifferentiationAP EAMCETAP EAMCET 2020 (17 Sep Shift 1)
Options:
  • A 0
  • B \(\frac{x}{y}\)
  • C \(\frac{y}{x}\)
  • D 1
Solution:
2988 Upvotes Verified Answer
The correct answer is: \(\frac{y}{x}\)
\(x^{2019} \cdot y^{2020}=(x+y)^{4039}\)
On differentiating
\(\begin{gathered}
\Rightarrow 2020 y^{2019} \frac{d y}{d x} x^{2019}+2019 x^{2018} \cdot y^{2020} \\
=4039(x+y)^{4038} \cdot\left(1+\frac{d y}{d x}\right) \\
\Rightarrow \quad 2020 \frac{(x+y)^{4039}}{y} \frac{d y}{d x}+2019 \frac{(x+y)^{4039}}{x} \\
=4039(x+y)^{4038}\left(1+\frac{d y}{d x}\right) \\
\Rightarrow \quad\left(\frac{2020}{y} \frac{d y}{d x}+\frac{2019}{x}\right)(x+y)=4039\left(1+\frac{d y}{d x}\right) \\
\Rightarrow \quad \frac{2020(x+y)}{y} \cdot \frac{d y}{d x}+\frac{2019}{x}(x+y)=4039\left(1+\frac{d y}{d x}\right) \\
\Rightarrow \quad \frac{d y}{d x}\left[4039-\frac{2020(x+y)}{y}\right]=\frac{2019(x+y)}{x} \\
\Rightarrow \frac{d y}{d x}\left[\frac{2019 y-2020 x}{y}\right]=\frac{2019(x+y)}{x}-4039 \\
\Rightarrow \frac{d y}{d x}=\frac{y}{x}
\end{gathered}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.