Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \(x+\frac{1}{x}=2 \sin \alpha\) and \(y+\frac{1}{y}=2 \cos \beta\), then \(x^3 y^3+\frac{1}{x^3 y^3}=\)
MathematicsTrigonometric Ratios & IdentitiesAP EAMCETAP EAMCET 2019 (23 Apr Shift 1)
Options:
  • A \(2 \cos 3(\beta-\alpha)\)
  • B \(2 \cos 3(\beta+\alpha)\)
  • C \(2 \sin 3(\beta-\alpha)\)
  • D \(2 \sin 3(\beta+\alpha)\)
Solution:
1473 Upvotes Verified Answer
The correct answer is: \(2 \sin 3(\beta-\alpha)\)
It is given that
\(\begin{array}{l}
x+\frac{1}{x}=2 \sin \alpha \Rightarrow x=\sin \alpha+i \cos \alpha=\cos \left(\frac{\pi}{2}-\alpha\right) +i \sin \left(\frac{\pi}{2}-\alpha\right) \\
\Rightarrow \quad x=e^{i\left(\frac{\pi}{2}-\alpha\right)}
\end{array}\)
and \(y+\frac{1}{y}=2 \cos \beta \Rightarrow y=\cos \beta+i \sin \beta=e^{i \beta}\)
Now, \(x^3 y^3=e^{i\left(\frac{3 \pi}{2}-3 \alpha\right)} \cdot e^{i 3 \beta}=e^{i\left(\frac{3 \pi}{2}+(3 \beta-3 \alpha)\right)}\)
\(\begin{aligned}
& =\cos \left(\frac{3 \pi}{2}+3 \beta-3 \alpha\right)+i \sin \left(\frac{3 \pi}{2}+3 \beta-3 \alpha\right) \\
& =\sin (3 \beta-3 \alpha)-i \cos (3 \beta-3 \alpha)
\end{aligned}\)
and \(\frac{1}{x^3 y^3}=\sin (3 \beta-3 \alpha)+i \cos (3 \beta-3 \alpha)\)
So, \(x^3 y^3+\frac{1}{x^3 y^3}=2 \sin (3 \beta-3 \alpha)=2 \sin 3(\beta-\alpha)\)
Hence, option (c) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.