Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If \( x^{m} y^{n}=(x+y)^{m+n} \) then \( \frac{d y}{d x} \) is equal to
MathematicsDifferentiationKCETKCET 2016
Options:
  • A \( \frac{x+y}{x y} \)
  • B \( x y \)
  • C \( 00 \)
  • D \( \frac{y}{x} \)
Solution:
2490 Upvotes Verified Answer
The correct answer is: \( \frac{y}{x} \)
Given that, \( x^{m} y^{n}=(x+y)^{m+n} \)
Taking log both the sides, we have
\( m \log x+n \log y=(m+n) \log (x+y) \)
Differentiating both the sides with respect to \( x \), we get
\[
\begin{array}{l}
\frac{m}{x}+\left(\frac{n}{y}\right) \frac{d y}{d x}=(m+n)\left(\frac{1+\frac{d y}{d x}}{x+y}\right) \\
\Rightarrow \frac{m}{x}-\frac{m+n}{x+y}=\left(\frac{m+n}{x+y}\right) \frac{d y}{d x}-\left(\frac{n}{y}\right) \frac{d y}{d x} \\
\Rightarrow \frac{m x+m y-m x-n x}{x(x+y)}=\left(\frac{m y+n y-n x-n y}{(x+y) y}\right) \frac{d y}{d x} \\
\Rightarrow \frac{1}{x}=\frac{1}{y} \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{y}{x}
\end{array}
\]

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.