Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\sqrt{\left(\frac{1+\cos 2 \theta}{1-\cos 2 \theta}\right)}$, then $\frac{d y}{d \theta}$ at $\theta=\frac{3 \pi}{4}$ is :
MathematicsDifferentiationBITSATBITSAT 2023 (Memory Based Paper 1)
Options:
  • A -2
  • B 2
  • C $\pm 2$
  • D None of these
Solution:
2266 Upvotes Verified Answer
The correct answer is: -2
$y=\sqrt{\frac{1+\cos 2 \theta}{1-\cos 2 \theta}}$
$\Rightarrow y=\sqrt{\frac{2 \cos ^2 \theta}{2 \sin ^2 \theta}}=\sqrt{\cot ^2 \theta}$
$\Rightarrow y=\cot \theta$
Differentiate w.r.t. ' $\theta$ ', we get: $\frac{d y}{d \theta}=-\operatorname{cosec}^2 \theta$
Now, $\left(\frac{\mathrm{dy}}{\mathrm{d} \theta}\right)_{\theta=\frac{3 \pi}{4}}=-\operatorname{cosec}^2\left(\frac{3 \pi}{4}\right)$
$=-\operatorname{cosec}^2\left(\pi-\frac{\pi}{4}\right)=-\operatorname{cosec}^2 \frac{\pi}{4}=-2$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.