Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=1+\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\ldots \infty$ with $|x|>1$, then $\frac{d y}{d x}=$
MathematicsSequences and SeriesCOMEDKCOMEDK 2016
Options:
  • A $\frac{-y^{2}}{x^{2}}$
  • B $\frac{y^{2}}{x^{2}}$
  • C $x^{2} y^{2}$
  • D $\frac{x^{2}}{y^{2}}$
Solution:
1200 Upvotes Verified Answer
The correct answer is: $\frac{-y^{2}}{x^{2}}$
Given, $y=\frac{1}{x}+\frac{1}{x^{2}}+\frac{1}{x^{3}}+\ldots \infty$
This is an infinite GP with $a=1$ and
$r=\frac{1}{x}$
$\because \quad S_{\infty}=\frac{a}{1-r}$
$y=\frac{1}{1-\frac{1}{x}}$
$y=\frac{x}{x-1}$
Now,
$\frac{d y}{d x}=\frac{(x-1)-x}{(x-1)^{2}}=\frac{x-1-x}{(x-1)^{2}}=\frac{-1}{(x-1)^{2}}$
$=-\frac{1}{\left(\frac{x^{2}}{y^{2}}\right)}=-\frac{y^{2}}{x^{2}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.