Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\frac{\sin \mathrm{h}^{-1} x}{\sqrt{1+x^2}}$, then $\left(1+x^2\right) \mathrm{y}_2+3 \mathrm{xy}_1+\mathrm{y}=$
MathematicsDifferentiationAP EAMCETAP EAMCET 2017 (26 Apr Shift 1)
Options:
  • A 2
  • B 1
  • C -1
  • D 0
Solution:
1098 Upvotes Verified Answer
The correct answer is: 0
$$
\begin{aligned}
& \text { Given, } y=\frac{\sinh ^{-1} x}{\sqrt{1+x^2}} \\
& \sqrt{1+x^2} y=\sinh ^{-1} x
\end{aligned}
$$
On differentiating w.r.t. $x$, we get
$$
\begin{aligned}
& \sqrt{1+x^2} y_1+y \frac{1}{2 \sqrt{1+x^2}} \cdot 2 x=\frac{1}{\sqrt{1+x^2}} \\
& \left(1+x^2\right) y_1+x y=1
\end{aligned}
$$
Again, on differentiating w.r.t. $x$, we get
$$
\begin{aligned}
& \left(1+x^2\right) y_2+y_1 \cdot 2 x+x y_1+y=0 \\
& \left(1+x^2\right) y_2+3 x y_1+y=0
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.