Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\left(1+x^{\frac{1}{4}}\right)\left(1+x^{\frac{1}{2}}\right)\left(1-x^{\frac{1}{4}}\right)$, then what is $\frac{d y}{d x}$ equal to?
MathematicsApplication of DerivativesNDANDA 2011 (Phase 2)
Options:
  • A 1
  • B $-1$
  • C $x$
  • D $x^{\frac{1}{2}}$
Solution:
1709 Upvotes Verified Answer
The correct answer is: $-1$
Let $y=\left(1+x^{1 / 4}\right)\left(1+x^{1 / 2}\right)\left(1-x^{1 / 4}\right)$
$=\left(1+x^{1 / 4}\right)\left(1-x^{1 / 4}\right)\left(1+x^{1 / 2}\right)$
$=\left(1-x^{1 / 2}\right)\left(1+x^{1 / 2}\right)$
$\left(\because(a+b)(a-b)=a^{2}-b^{2}\right)$
$\begin{array}{l}
=(1-x)\left(\because(a+b)(a-b)=a^{2}-b^{2}\right) \\
\Rightarrow y=1-x
\end{array}$
Differentiate both side w.r.t ' $x$, $\frac{d y}{d x}=-1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.