Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=A e^{\mathrm{mx}}+B e^{\mathrm{nx}}$, show that
$\frac{d^2 y}{d x^2}-(m+n) \frac{d y}{d x}+m n y=0$
MathematicsContinuity and Differentiability
Solution:
2604 Upvotes Verified Answer
$\frac{d y}{d x}=A \cdot m e^{m x}+B \cdot n e^{n x}$
and $\quad \frac{d^2 y}{d x^2}=A \cdot m^2 e^{m x}+B \cdot n^2 e^{n x}$
L.H.S. $=\frac{d^2 y}{d x^2}-(m+n) \frac{d y}{d x}+m n y$
$=A \cdot m^2 e^{m x}+B \cdot n^2 e^{n x}-(m+n)$
$\quad-A \cdot m n e^{m x}-B \cdot n^2 e^{n x}+A \cdot m n e^{m x}+B \cdot m n e^{n x}$
=0=R.H.S
Hence, proved.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.