Search any question & find its solution
Question:
Answered & Verified by Expert
If $\sqrt{y}=\cos ^{-1} x$, then it satisfies the differential equation $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=c,$ where $c$ is equal to
Options:
Solution:
1829 Upvotes
Verified Answer
The correct answer is:
2
Given, $\sqrt{y}=\cos ^{-1} x \Rightarrow y=\left(\cos ^{-1} x\right)^{2}$
On differentiating both sides w.r.t. $x$, we get
$$
\frac{d y}{d x}=2\left(\cos ^{-1} x\right) \times \frac{-1}{\sqrt{1-x^{2}}}
$$
Again, differentiating both sides w.r.t. $x$, we get
$\frac{d^{2} y}{d x^{2}}=-2\left[\begin{array}{c}\sqrt{1-x^{2}} \times \frac{-1}{\sqrt{1-x^{2}}} \\ -\cos ^{-1} x \times\left(\frac{1}{2}\right) \frac{(-2 x)}{\left(1-x^{2}\right)^{1 / 2}} \\ \hline\left(\sqrt{1-x^{2}}\right)^{2}\end{array} \right ].$
$=-2\left[\frac{-1+\frac{x \cos ^{-1} x}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right]$
$\frac{d^{2} y}{d x^{2}}=\left[\frac{2-\frac{2 x \cos ^{-1} x}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right]$
$\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2+x \frac{d y}{d x}$
$\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2$
But, it is given
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=c$
$\therefore c=2$
On differentiating both sides w.r.t. $x$, we get
$$
\frac{d y}{d x}=2\left(\cos ^{-1} x\right) \times \frac{-1}{\sqrt{1-x^{2}}}
$$
Again, differentiating both sides w.r.t. $x$, we get
$\frac{d^{2} y}{d x^{2}}=-2\left[\begin{array}{c}\sqrt{1-x^{2}} \times \frac{-1}{\sqrt{1-x^{2}}} \\ -\cos ^{-1} x \times\left(\frac{1}{2}\right) \frac{(-2 x)}{\left(1-x^{2}\right)^{1 / 2}} \\ \hline\left(\sqrt{1-x^{2}}\right)^{2}\end{array} \right ].$
$=-2\left[\frac{-1+\frac{x \cos ^{-1} x}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right]$
$\frac{d^{2} y}{d x^{2}}=\left[\frac{2-\frac{2 x \cos ^{-1} x}{\left(1-x^{2}\right)^{1 / 2}}}{\left(1-x^{2}\right)}\right]$
$\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}=2+x \frac{d y}{d x}$
$\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=2$
But, it is given
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=c$
$\therefore c=2$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.