Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\cot ^{-1}\left(\sqrt{\frac{1-\sin x}{1+\sin x}}\right)$, then $\frac{d y}{d x}=$
MathematicsDifferentiationMHT CETMHT CET 2020 (12 Oct Shift 2)
Options:
  • A $\frac{1}{2}$
  • B $-1$
  • C $\frac{1}{3}$
  • D 1
Solution:
2638 Upvotes Verified Answer
The correct answer is: $\frac{1}{2}$
$\begin{aligned}
y &=\cot ^{-1} \sqrt{\frac{\left(\cos \frac{x}{2}-\sin \frac{x}{2}\right)^{2}}{\left(\cos \frac{x}{2}+\sin \frac{x}{2}\right)^{2}}}=\cot ^{-1}\left(\frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}}\right) \\
&=\cot ^{-1}\left[\frac{1-\tan \frac{x}{2}}{\left.1+\tan \frac{x}{2}\right)}=\tan ^{-1}\left(\frac{1+\tan \frac{x}{2}}{1-\tan \frac{x}{2}}\right)=\tan ^{-1}\left[\frac{\tan \frac{\pi}{4}+\tan \frac{x}{2}}{1-\tan \frac{\pi}{4} \tan \frac{x}{2}}\right]\right.\\
\therefore \frac{d y}{d x} &=0+\frac{1}{2}=\frac{1}{2}
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.