Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If ydy dx=xy2x2+ϕy2x2ϕ'y2x2, x>0, ϕ>0, and y(1)=-1, then ϕy24 is equal to:
MathematicsDifferential EquationsJEE MainJEE Main 2021 (31 Aug Shift 2)
Options:
  • A 2ϕ1
  • B ϕ1
  • C 4ϕ2
  • D 4ϕ1
Solution:
1218 Upvotes Verified Answer
The correct answer is: 4ϕ1

Given:yxdydx=y2x2+ϕy2x2ϕ'y2x2 ....1 

Let yx=t

y=xt

dydx=t+x·dtdx

tt+xdtdx=t2+ϕt2ϕ't2

xtdtdx=ϕt2ϕ't2

t·ϕ't2ϕt2dt=1xdx
Integrating both sides

t·ϕ't2ϕt2dt=1xdx

Let ϕt2=p

ϕ't2.2t=dp

121pdp=1xdx

12lnp=lnx+C

12lnϕt2=lnx+C

12lnϕy2x2=lnx+C ...2

If x=1, y=-1 then C=12lnϕ1

Substituting value of C in 2

12lnϕy2x2=lnx+12lnϕ1

lnϕy2x2=lnx2+lnϕ1

If x=2 then 

lnϕy24=ln4+lnϕ1

SO, ϕy24=4ϕ1

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.