Search any question & find its solution
Question:
Answered & Verified by Expert
If $y=e^{\log _{e}\left[1+x+x^{2}+\ldots\right]}$, then $\frac{d y}{d x}$ is equal to
Options:
Solution:
1211 Upvotes
Verified Answer
The correct answer is:
$\frac{-1}{(1-x)^{2}}$
Given, $y=e^{\log \left[1+x+x^{2}+\ldots\right]}$
$$
\begin{array}{cc}
\because & (1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots \infty \\
\therefore & y=e^{\log (1-x)^{-1}} \\
\Rightarrow & y=(1-x)^{-1}
\end{array}
$$
On differentiating w.r.t. ' $x$ ', we get
$$
\begin{aligned}
\frac{d y}{d x} &=(-1)(1-x)^{-2} \\
&=\frac{-1}{(1-x)^{2}}
\end{aligned}
$$
$$
\begin{array}{cc}
\because & (1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots \infty \\
\therefore & y=e^{\log (1-x)^{-1}} \\
\Rightarrow & y=(1-x)^{-1}
\end{array}
$$
On differentiating w.r.t. ' $x$ ', we get
$$
\begin{aligned}
\frac{d y}{d x} &=(-1)(1-x)^{-2} \\
&=\frac{-1}{(1-x)^{2}}
\end{aligned}
$$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.