Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{y}=\mathrm{e}^{\mathrm{x}^{2}} \sin 2 \mathrm{x}$, then what is $\frac{\mathrm{dy}}{\mathrm{dx}}$ at $\mathrm{x}=\pi$ equal to?
MathematicsApplication of DerivativesNDANDA 2018 (Phase 1)
Options:
  • A $(1+\pi) \mathrm{e}^{\pi^{2}}$
  • B $2 \pi \mathrm{e}^{\pi^{2}}$
  • C $2 \mathrm{e}^{\pi^{2}}$
  • D $\mathrm{e}^{\pi^{2}}$
Solution:
2541 Upvotes Verified Answer
The correct answer is: $2 \mathrm{e}^{\pi^{2}}$
$y=e^{x^{2}} \cdot \sin 2 x$
$\frac{d y}{d x}=2 \cdot e^{x^{2}} \cdot \cos 2 x+2 x e^{x^{2}} \cdot \sin 2 x$
$=2 e^{x^{2}}(\cos 2 x+x \sin 2 x)$
$\left.\frac{d y}{d x}\right|_{x=\pi}=2 e^{\pi^{2}}(\cos 2 \pi+\pi \cdot \sin 2 \pi)$
$=2 e^{\pi^{2}}(1+0)$
$=2 \cdot e^{\pi^{2}}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.