Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\sqrt{e^{\sqrt{x}}}$, then $\frac{d y}{d x}=$
MathematicsDifferentiationMHT CETMHT CET 2021 (20 Sep Shift 2)
Options:
  • A $\frac{e^{\sqrt{x}}}{4 \sqrt{x}}$
  • B $\frac{e^{\sqrt{x}}}{4 x}$
  • C $\frac{e^{\frac{\sqrt{x}}{2}}}{4 \sqrt{x}}$
  • D $\frac{\mathrm{e}^{\sqrt{\mathrm{x}}}}{2 \sqrt{\mathrm{x}}}$
Solution:
1397 Upvotes Verified Answer
The correct answer is: $\frac{e^{\frac{\sqrt{x}}{2}}}{4 \sqrt{x}}$
$$
\begin{aligned}
& 2 \log y=\sqrt{x} \log e \Rightarrow 2 \log y=\sqrt{x} \\
& \frac{2}{y} \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \Rightarrow \frac{d y}{d x}=y\left[\frac{1}{4 \sqrt{x}}\right]=\frac{\sqrt{e^{\sqrt{x}}}}{4 \sqrt{x}}
\end{aligned}
$$
Taking $\log$ on both sides,
$$
2 \log \mathrm{y}=\sqrt{\mathrm{x}} \log \mathrm{e} \Rightarrow 2 \log \mathrm{y}=\sqrt{\mathrm{x}}
$$
Differentiating both sides w.r.t. $x$, we get
$$
\frac{2}{y} \frac{d y}{d x}=\frac{1}{2 \sqrt{x}} \Rightarrow \frac{d y}{d x}=y\left[\frac{1}{4 \sqrt{x}}\right]=\frac{\sqrt{e^{\sqrt{x}}}}{4 \sqrt{x}}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.