Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\log \left(\frac{1+x}{1-x}\right)^{1 / 4}-\frac{1}{2} \tan ^{-1}(x)$, then $\frac{d y}{d x}$ at $x=\frac{1}{\sqrt{2}}$ equals
MathematicsDifferentiationAP EAMCETAP EAMCET 2021 (23 Aug Shift 1)
Options:
  • A $\frac{-4}{3}$
  • B $\frac{4}{3}$
  • C $\frac{-2}{3}$
  • D $\frac{2}{3}$
Solution:
1466 Upvotes Verified Answer
The correct answer is: $\frac{2}{3}$
$$
\begin{aligned}
& \text { (d) } y=\frac{1}{4} \log \left(\frac{1+x}{1-x}\right)-\frac{1}{2} \tan ^{-1} x \\
& y=\frac{1}{4} \log (1+x)-\frac{1}{4} \log (1-x)-\frac{1}{2} \tan ^{-1} x \\
& \text { Then, } \frac{d y}{d x}=\frac{1}{4} \frac{1}{(1+x)}+\frac{1}{4} \cdot \frac{1}{(1-x)}-\frac{1}{2} \cdot \frac{1}{1+x^2} \\
& \left(\frac{d y}{d x}\right)_{x=1 / \sqrt{2}}=\frac{1}{4}\left\{\frac{1}{1+1 / \sqrt{2}}+\frac{1}{1-1 / \sqrt{2}}\right\} \\
& -\frac{1}{2} \cdot\left(\frac{1}{1+1 / 2}\right) \\
& =\frac{1}{4}\left\{\frac{\sqrt{2}(\sqrt{2}-1)+\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}+1)(\sqrt{2}-1)}\right\}-\frac{1}{3} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left\{\frac{2-\sqrt{2}+2+\sqrt{2}}{2-1}\right\}-\frac{1}{3} \\
& =-\frac{1}{4}\left\{\frac{4}{1}\right\}-\frac{1}{3}=1-\frac{1}{3}=\frac{2}{3} \\
\therefore\left(\frac{d y}{d x}\right)_{x=1 / \sqrt{2}} & =\frac{2}{3}
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.