Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $\mathrm{y}=\log _{10} \mathrm{x}+\log _{\mathrm{x}} 10+\log _{\mathrm{x}} \mathrm{x}+\log _{10} 10$ then what is
$\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\mathrm{x}=10}$ equal to?
MathematicsApplication of DerivativesNDANDA 2016 (Phase 1)
Options:
  • A 10
  • B 2
  • C 1
  • D 0
Solution:
2248 Upvotes Verified Answer
The correct answer is: 0
$y=\log _{10} x+\log _{x} 10+\log _{x} x+\log _{10} 10$
$y=\log _{10} x+\log _{x} 10+1+1$
Differentiating equation w.r.t. $\mathrm{x}$
$\frac{d y}{d x}=\frac{1}{x \log _{e} 10}-\frac{1}{\left(\log _{10} x\right)^{2}} \cdot \frac{1}{(x \log 10)}$
$=\frac{1}{x \log _{e} 10}\left[1-\frac{1}{\left(\log _{10} x\right)^{2}}\right]$
$\left(\frac{d y}{d x}\right)_{x=10}=\frac{1}{10 \log _{e} 10}[1-1]=0$
$\left[\begin{array}{l}\text { Note: } \log _{x} 10=\frac{\log _{10} 10}{\log _{10} x}=\frac{1}{\log _{10} x} \\ \frac{d}{d x}\left[\frac{1}{\log _{10} x}\right]=-\left(\log _{10} x\right)^{-2} \times \frac{1}{x \log _{e} 10} \\ =-\frac{1}{\left(\log _{10} x\right)^{2} x \log _{e} 10}\end{array}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.