Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
If $y=\ell \mathrm{n} \sqrt{\tan x}$, then what is the value of $\frac{d y}{d x}$ at $x=\frac{\pi}{4}$?
MathematicsApplication of DerivativesNDANDA 2011 (Phase 2)
Options:
  • A 0
  • B -1
  • C $1 / 2$
  • D 1
Solution:
2987 Upvotes Verified Answer
The correct answer is: 1
Let $\mathrm{y}=\ln \sqrt{\tan x}$
Differentiate both side w.r.t $^{\prime} x^{\prime}$
$\frac{d y}{d x}=\frac{1}{\sqrt{\tan x}} \cdot \frac{1}{2 \sqrt{\tan x}} \cdot \sec ^{2} x$
Now, $\frac{d y}{d x}$ at $x=\pi / 4$
$=\frac{1}{\sqrt{\tan \frac{\pi}{4}}} \times \frac{1}{2 \sqrt{\tan \frac{\pi}{4}}} \times \frac{1}{\cos ^{2}(\pi / 4)}$
$=\frac{1}{2} \times 1 \times \frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{2}}=\frac{1}{2} \times 1 \times 2=1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.